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Abstract—Existing IoT systems suffer from restricted commu-
nication distances, high deployment costs, and frequent battery
replacements, making them ineffective for managing healthcare
data. This paper presents Prometheus, a self-powered wristband
for reporting personal health status over long distances and
intelligently managing healthcare data. Prometheus backscatters
ambient BLE and ZigBee signals for low-power communication
while incorporating a multi-source energy harvester to convert
ambient RF, light, and heat into electricity. It also features
a biochemical sensor array for monitoring sweat biochemical
markers. Prototyped on a flexible PCB, Prometheus demonstrates
impressive efficiency, consuming only 5.8 mW for sweat sensing,
with BLE and ZigBee transmission energies significantly lower
than standard electrochemical workstations and commercial
alternatives. Qur experiments show consistent signal quality at
distances up to 20 meters. In summary, Prometheus emerges as
a convenient, efficient, and self-powered wristband, promising to
provide ubiquitous healthcare data management in our lives.

Index Terms—IoT, ZigBee, BLE, backscatter, data manage-
ment, sensor, healthcare

I. INTRODUCTION

Sweat is an easily accessible biofluid that contains a wealth
of physiological indicators [1], [2]: abnormal sweat concentra-
tions of K and Na™ indicate hypokalemia/hyperkalemia and
hyponatremia/hypernatremia; sweat chloride level can be used
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Fig. 1. The self-powered sweat-sensing wristband.

for cystic fibrosis diagnosis; lactic acid in sweat is a sensitive
marker for the blood pressure monitor. Effective management
of these biochemical indicators in sweat can significantly
enhance ubiquitous healthcare services.

In this paper, we ask the following question: can we design a
convenient sweat-sensing system that effectively manages the
biochemical indicators to continuously report on our health?
A lot of research has been carried out in this field [3]-[6]. For
example, FISA [3] created an electrochemical wristband, and
the entire system is powered by a rechargeable lithium polymer
battery. It is not self-sustainable and requires regular battery
replacement. [6] built a temporary tattoo-based biosensor that
is powered by 396/397 watch batteries, and it suffers from
the same battery life issues. A sweat-sensing RFID chip was
introduced in [4]. Even though it is passive, RFID technol-
ogy requires expensive and bulky readers, and the near-field
communication distance is very limited. Current sweat-sensing
systems suffer from either restricted communication distances,
high deployment costs, or frequent battery replacements.

In recent years, backscatter technology has been favored
by researchers for its ultra-low power and low cost [7]-[16].
Instead of using power-hungry components (e.g., power am-
plifiers, frequency synthesizers) for active signal generation, it
modulates data on ambient signals like WiFi, BLE, ZigBee,
LTE, and LoRa. This technology achieves communication
distances of tens of meters and power consumption in the tens
of microwatts range, making it a key enabler for ultra-low-
power connectivity [7], [17].

As shown in Fig. 1, we propose Prometheus, a self-powered
wristband for reporting and intelligently managing healthcare
data over long distances. Prometheus distinguishes itself with
three key innovations. Firstly, it harnesses BLE and ZigBee
backscatter technology for ultra-low-power communication
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Fig. 2. System overview. Prometheus is composed of three modules for biochemical sensing, energy harvesting and backscatter communication.

with mobile devices and smart appliances, enabling healthcare
data transmission over tens of meters. This negates the neces-
sity for dedicated healthcare workstations, utilizing existing
IoT devices like smartwatches and tablets as data collectors.
Secondly, to ensure sustainability, Prometheus integrates a
multi-source energy harvester that converts ambient RF, light,
and thermal energy into electricity, enabling uninterrupted
monitoring. Lastly, for sweat sensing, Prometheus employs
a sensor array to measure various biochemical indicators,
providing comprehensive healthcare insights. Worn on the
wrist, Prometheus autonomously collects and analyzes sweat
data using ambient energy, eliminating the need for hospital
visits or expensive monitoring devices, thus enhancing the
accessibility of IoT in healthcare management.

We build a prototype of Prometheus with commercial
components and conduct extensive experiments to validate
its effectiveness. The error rate of glucose concentration is
measured within 5%. The biochemical sensing and processing
circuit consumes only about 5.8 mW. The backscatter module
realizes 180 plJ/bit for BLE transmission and 720 pl/bit for
ZigBee transmission. In conclusion, Prometheus combines
biochemical techniques, backscatter technology, and energy
harvesting to demonstrate the feasibility of a self-powered
biochemical sensing wristband.

II. SYSTEM OVERVIEW

Fig. 2 presents the Prometheus overview, comprising three
modules: backscatter communication, energy harvesting, and
biochemical sensing. The backscatter module manages excita-
tion packet identification, RF-switch control, and sensor data
transmission. The energy harvesting module harvests energy
from ambient RF, light, and heat. The energy convertors,
including the solar panel for light, the thermoelectric generator
(TEG) for heat, and the rectifier for RF, are not shown in
real pictures. The biochemical sensing module, including the
biochemical sensor array, processing paths, multiplexer, and
ADC, measures the concentrations of sweat biochemical mark-
ers. The energy harvesting module powers both the biochemi-
cal sensing and backscatter modules. The biochemical sensing
module measures the sweat biochemical markers. The low-
power FPGA, initially reconfigured from non-volatile flash,
identifies ambient BLE/ZigBee packets. Upon identification,
it modulates sensor data by controlling RF-switch toggling.
After sensor data transmission, it prompts biochemical data
acquisition, repeating the process until stored energy is de-
pleted.

III. BACKSCATTER COMMUNICATION

In this section, we outline the backscatter module design,
covering the generation of excitation carriers, backscatter
modulation for BLE and ZigBee, and the identification of
ambient signals.

A. Signal generation

State-of-the-art backscatter systems can be divided into
two categories: non-single-tone and single-tone systems. Non-
single-tone systems utilize codeword translation for modula-
tion, where the tag translates excitation symbols into other
valid symbols from the same codebook, resulting in CRC
errors [8]. These systems necessitate redundant coding for re-
liability, significantly reducing throughput. Conversely, single-
tone systems generate backscatter signals, denoted by C(t) for
the excitation carrier, S(t) for sensor data, and B(t) for the
backscatter signal.
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fe and ¢, keep constant during the modulation. We are able
to change fs and ¢; to generate desired signals like BLE and
ZigBee. Backscatter signals are CRC-checked, eliminating the
need for redundant coding and requiring only one receiver. In
Prometheus, we utilize the single tone from BLE or ZigBee
to modulate sensor data.

1) Single tone generation: BLE employs frequency mod-
ulation, producing a single-frequency tone with a stream of
constant ‘0’s and ‘I’s. As shown in Fig. 3(a), a scrambler,
utilizing a linear-feedback shift register (z7 + x* + 1), en-
sures randomness in the encoded bitstream, known as data
whitening. The register is initialized by the channel number.
There is a distinct mapping between the raw bit and the
whitened bit, which indicates that reverse engineering can
be used to obtain the desired whiten bitstream [7]. ZigBee
uses OQPSK for modulation in Fig. 3(b). Every four bits
are translated into one of the pseudo-random IQ sequences
(co, €1, C2...C30,C31), known as direct sequence spread spec-
trum (DSSS) [18]. Specifically, even-indexed chips cg, co, c4,...
represent in-phase components (I), while odd-indexed chips
c1,C3,Cs5,... represent quadrature components (Q). A time
offset (7.) in branch Q prevents simultaneous changes in
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Fig. 3. Generation of BLE and ZigBee signals.

both branches. The I/Q branch then undergoes pulse-shaping
filtering, which applies a specific waveform to reduce spectral
leakage, as shown in Eq. 2. The combination of branches
constructs the ZigBee baseband signal in Eq. 3. m represents
the state of 1/Q branches at the edge of consecutive chips. f;
denotes the signal frequency, and ¢; refers to its phase. Pre-
vious works [19] [20] have demonstrated continuous phase
change at the edge of consecutive chip units, represented by
o; = 2;10(27r f&Te+ ¢r). With each new chip unit, the only
variable left in (3) is f;, equivalent to minimum shift keying.
While the data flow maps one chip to one frequency shift,
the pseudo-random sequence generated by DSSS complicates
direct control of the chip stream. While the data flow maps
one chip to one frequency shift, the pseudo-random sequence
generated by DSSS complicates direct control of the chip
stream. Therefore, we can get the ZigBee single-frequency
signal by filling the data fields with a constant ‘0" or ‘1’.

sin(m input =1
p(t) = ( 2T) ; @
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I t = :t :t ‘ 9
(t) +Q(t) = Esin(m 2T 2 )k sin( 2T, 2
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3)
2) Modulation: We leverage phase shift to modulate
BLE/ZigBee. The IPS modulation in IBLE [21] is adopted to
modulate BLE. The BLE receiver takes a quadrature demodu-
lator for signal demodulation, which inspires IBLE backscatter
signals with different phases. For bit ‘1’ modulation, a square
wave at phase (¢o + ) controls the RF switch, where ¢
denotes the phase of the previous square wave. For bit ‘0’,
a square wave at phase (¢o — %) controls the RF switch. A
similar strategy is employed for ZigBee modulation, with the
difference lying in modulation intervals: BLE modulates every
1 us, while ZigBee modulates every 0.5 us.

B. Packet identification

Prometheus employs a high-bandwidth rectifier, inspired
by RFID and WISP, to directly extract baseband envelopes
for identifying excitation signals like BLE and ZigBee with
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Fig. 4. The extracted baseband signals.
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Fig. 5. Signal identification.

ultra-low power [22]. Distinct envelopes for different ambient
signals are observed in Fig. 4. To distinguish these signals,
we calculate the ratio of AC to DC components: D(p) =

%, where Vpqse(p) is the sampled envelope data,
D(p) is the DC value at time instant. p and w are the sliding
window sizes. The AC component is calculated as: A(p) =
Viase(p) — D(p). The ratio AC/DC' is computed accordingly.
The analysis in Fig. 5(a) reveals that for ZigBee, 99.8% of data
falls below 0.02, while for BLE, over 99.8% lies between 0.03
and 0.05. Additionally, signals from 802.11b and 802.11n ex-
hibit AC/DC ratios exceeding 0.8, demonstrating the efficacy
of this ratio in identifying BLE/ZigBee from other ambient
in-band signals. Given the close distributions of AC/DC
for BLE and ZigBee, we leverage envelope characteristics to

) distinguish between the two signals. Notably, the distinctive

envelope of BLE facilitates signal identification. We cross-
correlate the envelope of a pre-stored BLE sequence S(p) with
the excitation signal A(p), excluding the DC component D(p)
due to its minimal contribution to packet identification. The
signs of A(p) and S(p) are used to reduce the computation
complexity in the calculation of cross-correlation in Eq. 4. The
low-power FPGA AGLN250V2-VQI100I efficiently performs
cross-correlation calculations. Fig. 5(b) displays the R(%)
results of 2000 packets, with a sampling rate of 20 MS/s and
a template length of 128 samples, indicating consistent cross-
correlation values above 0.7 for BLE signals.

R(i) = S Szgn(A(p —1))sign(S(p))
VEro [sign(A) /S lsign(S()))
S sign(A(p —i))sign(S(p))

= 7 “4)

In conclusion, we merge the AC/DC' ratio and cross-
correlation for signal identification. BLE is identified if the
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AC/DC ratio is below 0.8 and the correlation result is above
0.7, while ZigBee is identified if the AC/DC ratio is below
0.8 and the correlation result is below 0.7.

IV. POWER MANAGEMENT

REF, light, and thermal energy are selected as energy sources
for their widespread availability [23], [24]. Indoors, WiFi
signals offer 0.08 to 1 uWW of power, ensuring reliable energy
regardless of environmental conditions. The light energy, both
indoors and outdoors, ranges from 0.1 to 100 mW/ch,
providing a dependable energy source. Additionally, thermal
energy from human skin, reaching 20 mW/cm?, serves as
another abundant energy resource due to the wristband’s
proximity to the body. This diverse range of energy sources
enhances the system’s universality and sustainability. We use
solar panels, thermoelectric generators (TEGs), and rectifier
circuits to harvest energy from light, thermal, and RF signals,
respectively. The resistance of the TEG at 10°C, the solar
panel with 500 Lux light, and the rectifier with 0 dBm
RF signal are 6.1292, 119K, and 1.09M (2, respectively. If
those harvesting modules are directly connected to the power
management chip (the TI BQ25570 harvesting management
chip in the Prometheus system), the TEG, whose resistor is
much smaller than the other components, will act as a load
and consume a large portion of energy. To prevent energy
loss, we isolate each harvesting module using low-dropout
Schottky diodes, as depicted in Fig. 6. This ensures that most
of the energy is efficiently harvested by the TI BQ25570 power
management chip, as the diodes prevent the TEG from acting
as a load.

V. ENERGY-EFFICIENT SWEAT SENSING

This section describes the sweat-sensing module. Specifi-
cally, Prometheus uses a customized biochemical sensor array
and signal processing circuits for sweat sensing. The sensor
array and the structure of signal processing circuits are shown
in Fig. 7.

A. Fabrication of biochemical sensor array

Fig. 7(a) illustrates a six-channel electrode array for de-
tecting glucose, lactate, Na*, K™, H*, and Cl™ in sweat.
These electrodes convert the corresponding component con-
centrations into electrical signals. The amperometric glucose
and lactate sensors are based on a traditional three-electrode
system integrated with a differential electrode. The glucose
oxidase, lactate oxidase, and BSA are modified on three
working electrodes, respectively. A carbon electrode serves
as the counter electrode, and an Ag/AgCl electrode acts as
the reference electrode. The BSA-covered working electrode
is employed here as a control electrode to counteract drift
and interference. Measurement of Na©, K+, HT, and Cl~
levels utilizes ion-selective electrodes paired with a PVB-
coated reference electrode.

B. Differential mode technique for baseline drift

In electrochemical systems, baseline drift can occur due
to environmental factors, human movement, or instrument
artifacts, making it challenging to accurately measure tar-
get molecule concentrations in sweat over time. Various
approaches, including the dual-reported method [25], filter
technique [26], and compensation algorithm [27] have been
proposed to overcome this issue, whereas the mechanism of
baseline drift remains unclear. In Prometheus, a differential-
measurement method is employed to counteract baseline drift
and noise. The schematic of the differential-mode glucose
sensor is shown in Fig. 8(a). The electrode array comprises
a sensing electrode covered with glucose oxidase (GOx) and
a control electrode covered with bovine serum albumin (BSA).
BSA is chosen as the control due to its inert nature and
stability. Both electrodes respond to environmental effects and
biomolecule interference, but only the GOx-covered electrode
reacts to glucose. As shown in the block diagram of the
differential-mode glucose sensor shown in Fig. 8(b), both
the GOx-covered working electrode and the BSA-covered
electrode respond to baseband drift caused by environmental
effects (I;), noise caused by diverse biomolecules ranging
from small electrolytes, and metabolites to hormones and
larger proteins in human sweat (I3). But only the GOx-covered
electrode responds to the target glucose (I2). The resulting
interference and drift signals are counteracted through signal
processing and kinetic differential measurement, providing an
effective solution for drift correction and interference compen-
sation.

C. Signal processing circuit

In the biochemical processing circuitry (Fig. 7(b)), analog
circuits are intricately designed to ensure precise resolution of
each electrode’s output within the ADC’s input voltage range.
Reverse currents from the glucose and lactate electrodes are
measured at the Ag/AgCl electrode, necessitating the use
of a trans-impedance amplifier (TTA) to convert current to
voltage. As TTA outputs negative voltage for reverse currents,
an inverter stage follows to convert them to positive voltages
accepted by the ADC. Each path also includes a unity-gain
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low pass filter (LPF) to minimize noise and interference,
with a -3 dB frequency at 1 Hz. In the measurement paths
for H*, Ci~, KT, and Na™, the generated signals are the
voltage differences between their corresponding ion-selective
electrodes (ISE) and PVB-coated shared reference electrode.
We directly measure such voltage differences. Every one of
their signal processing paths starts with two voltage buffers
for the sensor electrode and PVB-coated reference electrode,
followed by a differential amplifier and ADC. For the purpose
of suppressing noise and interference, the last stage is a low-
pass filter.

VI. IMPLEMENTATION

In this section, we demonstrate the implementation of the
three modules for backscatter communication, energy harvest-
ing, and biochemical sensing. Details regarding the power
consumption are shown in Appendix A.

A. Packet identification and backscatter communication

A high-bandwidth rectifier, composed of HSMS-286C,
capacitors, and resistors, captures a fine-grained base-
band envelope. The rectifier output is sampled by a low-
power ADC LTC2366CTSS8. Packet identification and RF-
switch control are managed by a Microsemi IGLOO nano
AGLN250V2-VQ100I FPGA. Excitation signals, including
WiFi (802.11b/n), BLE, and ZigBee, are transmitted using
laptops with AR938X wireless network adapters, TI CC2640
BLE modules, and CC2530 ZigBee modules.

B. Energy harvesting

The Prometheus prototype features a 2-layer wristband-
shaped flexible PCB measuring 145mm x 45mm. Energy
harvesting components include a solar cell MP3-37 (114mm x
37mm) for light energy, six thermoelectric generators TG12-8-
O1LS connected in series (40mm x 40mm) for heat energy, and
a 5-stage voltage doubler circuit using capacitors and HSMS-
286C Schottky diodes for RF energy. Power management is
handled by the TI energy harvesting chip BQ25570, with a
1000 uF capacitor utilized for energy storage.

C. Sweat sensing

The signal processing circuitry employs operational ampli-
fiers LT1462ACS8, along with capacitors and resistors. These
amplifiers require dual-rail power supplies of +5V and -5V.
The booster converter TPS61220 and charge pump voltage
inverter TPS60400 are utilized to convert the BQ25570’s 3.3V
to +5V and -5V, respectively. Processed signals representing
glucose, lactate, K+, Na*, HT, and Cl~ levels are directed
to an ADC AD7466 through the multiplexer ADG758.

VII. EVALUATION

In this section, we evaluate the performance of backscatter
communication, sweat sensing and analysis, energy harvesting,
real-time sensor reading, and data transmission. The efficiency
of energy harvesting is shown in Appendix B.

A. Backscatter communication

1) Packet identification: We evaluate BLE/ZigBee packet
identification accuracy across varying sampling rates. Two
comparison methods are employed: the first utilizes AC/DC
to discern excitation packets, identifying BLE if Th; <
AC/DC < Thy and ZigBee if AC/DC < Th;. The second
method combines AC'/DC with cross-correlation, identifying
BLE if R > Ths and AC/DC < Thy, and ZigBee if
R < Ths and AC/DC < Ths. Fig. 9(a) and Fig. 9(b)
present the experiment results. Both BLE identification meth-
ods achieve over 90% accuracy at sampling rates exceeding
2.5 MS/s. However, using only AC'/DC drops below 30%
accuracy at 1.25 MS/s, while the alternative algorithm main-
tains over 75% accuracy. For ZigBee identification, AC/DC
accuracy significantly declines below 30% at 5 MS/s and
further drops below 30% at 2.5 MS/s, whereas the alternative
algorithm maintains over 85% accuracy at 2.5 MS/s. In terms
of identification accuracy with interference, we use a laptop
equipped with a Qualcomm Atheros AR938X NIC to transmit
802.11n packets, serving as an interference source. Packet
payload size is set to 500 bytes, with transmission rates of
0 pkts/s (no interference), 300 pkts/s (low interference), and
1000 pkts/s (high interference). BLE identification accuracy
at a sampling rate of 1.25 Msps is 0.98, 0.84, and 0.47,
while ZigBee identification accuracy is 0.95, 0.8, and 0.45, as
illustrated in Fig. 9(c). Ambient Wi-Fi transmission introduces
interference affecting packet identification.

2) Throughput, BER, and RSSI: The throughput, bit error
rate (BER), and RSSI are assessed in a hallway setting, with
the backscatter sensor positioned 0.2 m from the transmitter
and transmission power boosted to about 20 dBm using a
power amplifier. Results are depicted in Fig. 9(d), Fig. 9(e),
and Fig. 9(f). Fig. 9(d) illustrates Prometheus’ BER with
increasing uplink range: BLE maintains below 1% BER over
28 m, while ZigBee stays below 1% up to 20 m. Throughput
evaluation reveals BLE sustaining over 990 kbps over 28 m,
whereas ZigBee throughput decreases to 232 kbps at 20 m. As
expected, signal strength for both BLE and ZigBee diminishes
with distance.
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Fig. 10. Differential mode technique.

B. Sweat sensing and analyzing

Fig. 10 illustrates the successful application of the differen-
tial mode technique for glucose monitoring in artificial sweat.
The artificial sweat matrix, simulating real sweat samples,
includes various components such as pyruvic acid, urea,
NH,Cl, KCI, uric acid, and M gCls, along with glucose at
different concentrations. Fig. 10(a) displays the amperometric
responses of a glucose-sensing electrode and a BSA control
electrode to glucose solutions spanning a representative sweat
concentration range of 0 to 500 uM. The glucose-sensing
electrode initially exhibits instability until the glucose con-
centration reaches 200 uM. Despite an apparent response to
50 uM of glucose, it is obscured by baseline fluctuations. Both
the glucose-sensing and BSA control electrodes are affected by
baseline drift and interference noise, albeit to a similar extent.
However, after differential measurement, interference noise
and baseline drift are mitigated, as demonstrated in Fig. 10(b),
where differential signals distinctly respond to glucose at a
low concentration of 50 uM. Further details on Prometheus’s
performance in varying temperature environments are provided
in Appendix C.
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Fig. 11. System reading rate.

C. Real-time sensor reading and data transmitting

Sensor readings for the glucose electrode, control electrode,
lactate electrode, K+ electrode, Na™ electrode, H+ electrode,
Cl~ electrode, and the temperature are transmitted. For each
reading, only 8 bits of a 12-bit ADC output are transmitted and
analyzed. Therefore, there are in total 8*8=64 bits for trans-
mission. We perform reverse engineering for BLE advertising
packets, whose single tone lasts for 248 ps. Theoretically, it
can generate BLE packets with a payload length of 16 bytes.
Similarly, ZigBee packets, comprising a single tone lasting
508 us, can be created with an 8-byte data field by reducing
the preamble field to 28 bits.

Fig. 11 shows that with 500 Lux office light, our system
can receive and decode 1.5 BLE and 1.2 ZigBee packets
per second. At 1000 Lux, this increases to 2.9 BLE and
2.5 ZigBee packets. Using RF energy or human heat, BLE
readings can reach 5 and 4.1 per second, respectively, while
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ZigBee readings can reach 7 and 5.5 per second. Considering
that the needed data-refreshing rate of those sensor data can
be as low as 1 reading every 5 minutes, our data transmission
rate is sufficiently high.

VIII. DISCUSSION

Application scenarios: Prometheus is promising to com-
municate with BLE/ZigBee health monitoring devices. BLE
healthcare monitoring devices include pulse oximeters [28],
blood pressure monitors [29], body fat scales [30], etc. Ad-
ditionally, PIR motion sensors [31], pulse detectors [32],
ECG machines [33], etc. communicate with ZigBee signals.
Prometheus can upload monitored healthcare indicators to
these devices without dedicated workstations or readers.

Scalability: The Prometheus prototype supports BLE and
ZigBee connectivity, with hardware compatibility for other
protocols [7], [8], [17], [34]-[36]. For instance, it can integrate
with edge servers to perform BLE backscatter, and emulate
a passive BLE protocol stack [37]. Additionally, Prometheus
can decode WiFi packets by detecting WiFi signal envelopes,
enabling native connectivity via ambient WiFi signals [38].
It can also utilize uncontrolled LTE signals for healthcare
data transmission and decode LoRa packets with SAW filters,
facilitating health monitoring in outdoor environments [39],
[40].

IX. CONCLUSION

This paper presented Prometheus, the first self-powered
sweat-sensing wristband capable of reporting personal health
status over long distances and intelligently managing health-
care data. Harvesting multiple ambient energies, it is capable
of monitoring human sweat and transmitting sensor data at a
range of over 20 m.
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