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ABSTRACT

We present multiscatter, a novel backscatter design that can simul-

taneously work with multiple excitation signals for personal IoT

sensors. Speci!cally, we show for the !rst time that the backscatter

tag can identify various excitation signals in an ultra-low-power

way, including WiFi, Bluetooth, and ZigBee. Further, we employ a

new modulation approach, overlay modulation, that can leverage

those excitation signals to convey tag data on top of productive

data, which makes decoding both data possible with only a single

personal radio. Since 2.4 GHz signals and personal radios are ev-

erywhere, multiscatter is readily deployable in our everyday IoT

applications.

We prototype multiscatter using an FPGA and various commod-

ity radios. Extensive experiments show that for mixed 802.11b&n,

Bluetooth and ZigBee signals, the average identi!cation accuracy of

four protocols is more than 93%. The maximal aggregate through-

put of both productive and tag data is 278.4 kbps with a single

Bluetooth radio, and the maximal backscatter ranges are 28 m, 22

m, and 20 m for WiFi, Bluetooth, and ZigBee, respectively. We

also demonstrate that it can leverage excitation diversity to pro-

vide uninterrupted communication and greater throughput gains,

whereas the single-protocol tag being idle when target carriers are

not available.
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Figure 1: Multiscatter conceptual design. The multiscatter

tag is able to identify di!erent excitation signals and uses

overlay modulation to convey tag data with productive data.

Only a single commodity personal radio is adequate to de-

code both data.

1 INTRODUCTION

Backscatter communication is one of the most essential technolo-

gies for Internet-of-Things (IoT) applications since it can provide

ubiquitous connectivity to ultra-low-power sensors [7–9, 11–16,

18, 27, 28, 31, 36, 37, 40, 46, 48]. A typical backscatter design con-

sists of three key parts: a carrier provider, a backscatter tag, and a

backscatter receiver. Taking RFID as an example, the RFID reader

plays two roles as the carrier provider and receiver. Despite reduced

system complexity by such a dual-role design, the high building

cost prevents its mass adoption in personal IoT applications. Be-

cause it requires dedicated RFID readers and cannot reuse widely-

deployed commodity radios that do not originally support receiv-

ing backscatter signals. In consequence, backscatter researchers

have made tremendous e"ort to explore existing signals and com-

modity radios for backscatter communication in the past decade

[6, 17, 19, 20, 23, 28, 29, 33, 39, 42–44, 47].

Along the line, we envision ready-to-use personal backscatter

sensors should meet the following requirements:

(a) Universal: It should be able to support excitation diversity, i.e.,

working with intermittent multiple carriers, such as WiFi, Blue-

tooth, and ZigBee, so that backscatter connectivity can be signi!-

cantly improved.

(b) Compatible: It should allow excitation signals to carry pro-

ductive data and serve as carriers at the same time because non-

productive signals are not common and greatly reduce spectral

e#ciency.

(c) Deployable: It should support single personal-radio decoding

for easy and wide adoption since the requirement of more hardware

or !rmware modi!cation would cause more cost for personal IoT

sensors.
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Table 1: Comparison of backscatter systems.

Excitation

diversity

Productive

carrier

Single

commodity

receiver

WiFi backscatter [19] � �

FS backscatter [44] � �

Interscatter [17] �

Passive WiFi [20] �

LoRa backscatter [33] �

Hitchhike [42] �

FreeRider [43] �

X-Tandem [47] �

PLoRa [29] �

Multiscatter � � �

The above requirements seem simple, but in fact no backscatter

design satis!es all of them for at least two reasons. First, no prior

backscatter design investigates how to identify di"erent excitation

signals and exploit such diversity. The closest work, FreeRider [43],

provides a holistic way to modulate multiple excitation signals,

but does not support excitation diversity to distinguish di"erent

protocols simultaneously. Second, while packet-level backscatter

systems, e.g., WiFi backscatter [19] and FS backscatter [44], are

compatible and deployable at extremely low data rates, the commu-

nity shifts focus to symbol-level solutions for higher throughput

and better ranges. Unfortunately, a dilemma arises: they have to

take sides: either working with non-productive carriers or requiring

more (specialized) hardware to do decoding. For example, in inter-

scatter [17] and LoRa backscatter [33], only a single commodity

receiver is needed, but the carrier has to be single tones gener-

ated by a Bluetooth device. In contrast, Hitchhike [42], FreeRider

[43], and X-Tandem [47] can take any productive signals as car-

riers yet requires two synchronized receivers to decode the tag

data. PLoRa [29], though supports productive carriers, cannot work

with commodity receivers. A detailed comparison of state-of-the-

art backscatter systems is shown in Table 1. In short, designing a

backscatter system that is universal, compatible, and deployable

for personal IoT remains a big challenge.

In this paper, we present multiscatter, a novel backscatter design

that satis!es all the above requirements. It works with multiple

excitation signals by identifying di"erent protocols !rst and then

modulates data onto the productive carriers accordingly. We ob-

serve two unique opportunities for multiscatter: abundant 2.4 GHz

signals everywhere, home, o#ce, malls, cafes, etc, and ubiquitous

personal radios, e.g., smartphones, that support WiFi/Bluetooth

communications. By reusing existing 2.4GHz excitation signals and

pervasive commodity radios as backscatter infrastructure, multi-

scatter signi!cantly lowers the barrier to wide adoption and realizes

readily deployable backscatter communication for our everyday

applications. To make this possible, however, we need to address

two main challenges.

(a) How to distinguish di!erent excitation packets in an ultra-low-

power way?

In wireless communication, every packet has a preamble part

that de!nes a speci!c series of chips to identify itself. Identify-

ing such preambles from high-bandwidth signals on tags, how-

ever, is extremely di#cult, because unlike active radios, backscatter

tags do not have power-hungry components, e.g., ampli!er, high-

frequency oscillator, to acquire high-bandwidth baseband signals,

like WiFi. Further, enabling tags to support multiprotocol identi!-

cation exacerbates the problem as resources are severely limited

for an ultra-low-power design. Our solution is to design a high-

bandwidth recti!er that is able to produce high-quality baseband

signals for 802.11b/n, Bluetooth, and ZigBee identi!cation. Such a

design is realized by using simple hardware elements, like diodes,

capacitors, and resistors. In contrast, prior RFID solutions only sup-

port bandwidths of less than 160 kbps. Besides, we employ various

techniques together, including quantization, downsampling, and

ordered matching, to signi!cantly reduce computation and storage

overhead while keeping identi!cation results accurate. The detailed

design is described in §2.2 and §2.3.

(b) How to modulate productive packets and make them decodable on

a single commodity radio?

Backscattering with productive carriers is a signi!cant step to-

wards exploiting excitation signals. The state-of-the-art systems,

e.g, Hitchhike, X-Tandem, PLoRa, however, all have to rely on pro-

ductive data in the original channel to decode tag data, whichmeans

if the original productive data is corrupted somehow, there is no

way to successfully recover tag data even with error-free backscat-

tered packets. To address this, we propose overlay modulation, a

novel modulation approach that modulates tag data on top of am-

bient signals like "single tone". Speci!cally, tag modulation is done

by creating phase/frequency di"erences between the reference and

modulatable symbols. To decode both productive and tag data, a sin-

gle commodity radio is enough because reference symbols contain

productive data, and comparing them against modulated symbols

would recover tag data. The reference symbols can carry arbitrary

data in the excitation signals. The full detailed process can be found

in §2.4.

To show the feasibility of our design, we prototype multiscatter

using an FPGA and various commodity radios. Through extensive

experiments, we show that

• Multiscatter achieves an average identi!cation accuracy of

more than 93% in the presence of 802.11b&n, Bluetooth,

and ZigBee excitation signals with a sampling rate of 2.5

Msps. Speci!cally, the identi!cation accuracies are 94.3%

for 802.11n, 95.9% for 802.11b, 81.8% for BLE, and 99.9% for

ZigBee.

• The maximal aggregate throughput of both productive and

tag data is 278.4 kbps with a single Bluetooth radio, of which

the productive data throughput is 141.6 kbps, and tag data

throughput is 136.8 kbps. The maximal backscatter ranges

are 28 m, 22 m, and 20m for WiFi, Bluetooth, and ZigBee,

respectively.

• We also demonstrate that in the presence of various excita-

tion signals, multiscatter can leverage such excitation diver-

sity to provide uninterrupted communication and greater

throughput gains, whereas single-protocol tag being idle

when target signals are not available.
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Contributions: We make the following contributions:

• We present a low-power backscatter design that for the !rst

time can e"ectively support multiprotocol identi!cation, in-

cluding WiFi, Bluetooth, ZigBee.

• We introduce overlay modulation, the !rst backscatter mod-

ulation that enables single-commodity-radio decoding by

removing the dependency of data from the original chan-

nel. It is so *exible that various tradeo"s between tag-data

rates and productive-data rates can be made for a range of

practical applications.

• We demonstrate a working system that is able to harness

multiple excitation signals to provide much better connec-

tivity in real scenarios. Empirically experiments con!rm its

feasibility and e#cacy.

2 MULTISCATTER DESIGN

We !rst give an overview of our multiscatter framework, then in-

troduce how we obtain high-bandwidth baseband signals, correlate

those signals to identify protocols, and modulate tag data onto

excitation carriers.

2.1 Overview

As shown in Figure 2, the tag harvests RF power from abundant

excitation signals, namely WiFi, Bluetooth, and ZigBee in the 2.4

GHz ISM band. Afterward, it uses a high-bandwidth recti!er to ac-

quire baseband signals and correlates sampled bits with pre-stored

templates. After the carrier is identi!ed, it picks the correspond-

ing modulation scheme to overlay tag data on top of productive

carriers.

At a high level, this basic idea of multiscatter is simple. But

there are several critical challenges to turn it into practice. First,

the backscatter tag should avoid power-hungry components as

much as possible, e,g, power ampli!er. Also, it has very restricted

resources for computation. For example, for baseband processing,

we choose the FPGA that has the lowest power consumption on the

market, Igloo nano AGLN250 [2]. Furthermore, decoding tag data

should be easily done by a single commodity radio, e.g., Bluetooth

on smartphones, for personal IoT applications.

2.2 High-Bandwidth Signal Acquisition

Packet detection is the !rst step of all wireless protocols, which

indicates which type of packet is coming. For example, a typical

802.11b packet has a preamble of 144 µs long 1, which is composed

of 128 scrambled 1’s and 16 Start Frame Delimiter (SFD) bits. For

Bluetooth, it uses a preamble of 1 byte, de!ned as 0xAA, which is

8 µs 2. As we need to identify those packets in the same band, the

!rst question arises: how to obtain high-quality baseband signals

for identi!cation?

2.2.1 High-Bandwidth Envelope Detector. While active radios

always use high-frequency mixers and low noise ampli!ers to ob-

tain baseband signals, backscatter tags do not have such luxury

amenities due to energy constraints. Traditionally, the RFID tag

1The optional "short preamble" in 802.11b is 72 µs .
2As designed for low-power scenarios, BLE and Bluetooth are interchangeable in this
paper.

Figure 2: Multiscatter overview. Besides energy-harvesting,

it "rst obtains baseband signal through the high-bandwidth

recti"er, then identi"es the incoming carrier type, and "-

nally modulates tag data onto the carrier.
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Figure 3: (a) Basic recti"er; (b) Voltage di!erence; (c) Our rec-

ti"er.

employs a basic recti!er to do so. As shown in Figure 3a, when

the incoming signal’s amplitude increases, the capacitor voltage is

increased via the rectifying diode. When the input amplitude falls,

the capacitor voltage is reduced as it is discharged to the resistor

R1. It is also called the "envelope detector" as the output is the

absolute value of the baseband signal. This form is a cheap, simple,

and e"ective solution to demodulate ASK (Amplitude Shift Keying)

signals for RFID protocols. Nevertheless, lots of information gets

lost for frequency- and phase-modulated signals.

To acquire quality basebands from high-bandwidth signals, e.g.,

WiFi, there are two key issues of using this recti!er. The !rst one is

that the output voltage of the basic recti!er is not the peak voltage

of the input but the di"erence between the peak voltage (Vpeak ) and

the turn-on voltage of the diode (Von ), as shown in Figure 3b. So if

the incoming peak voltage is less than the diode turn-on voltage, the

diode will never turn on, which means no signal can come through.

Meanwhile, the peak voltage squeezed from the tag’s antenna is

limited because high-frequency signals decay quickly in the air.

To address this, we employ a clamp circuit, as shown in Figure 3c.

When the input amplitude falls, due to the low turn-on voltage of

diode D1, VD1, the voltage at the output of the clamp diode would

not be lower than -VD1; otherwise the GND can charge C1 quickly

through D1, keeping the voltage no lower than -VD1. As shown

in Figure 4a, with an input signal at 2.4 GHz, the clamp circuit
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Before clamp

After clamp

(a) Clamp voltage booster

802.11b signal

Our rectifier

WISP rectifier

(b) Rectified signals

Figure 4: With the help of optimized clamp and RC circuits,

our recti"er is able to obtain high-bandwidth baseband sig-

nals from 2.4 GHz carriers.

e"ectively produces higher voltage. Here, someone may think of

using amulti-stage recti!er tomake even higher voltage; however, it

not only reduces rectifying e#ciency, but also distorts input signals

very much. Thus it is mainly used for energy-harvesting purposes

[24]. The second issue is the response rate of the recti!er. From

Figure 3a, we know the quality of baseband signals from the recti!er

is highly related to the discharging speed of the capacitor, which

is τ , the time constant of an RC circuit. If it is too small or large,

input signals would be distorted signi!cantly. Suppose the carrier

frequency of input RF signals is fc and the baseband frequency

is fb , a proper τ should be chosen by 1

fc
≪ τ ≪ 1

fb
[24]. In our

case, fc = 2.4 GHz and fb = 20MHz as bandwidths of Bluetooth

and ZigBee are even lower. We compare our recti!er against WISP

implementation [3]; results are shown in Figure 4b. The baseband

signal of theWISP recti!er experienced large distortions for 802.11b

input because it is designed for low-bandwidth signals from RFID

readers, which is typically between 40 to 160 kbps. In contrast, our

recti!er !ts the high-bandwidth input signal much better thanks

to the properly tuned clamp and RC circuits.

To examine our recti!er’s performance, we set the transmission

power of 802.11n signals at 30 dBm 3, the output voltage threshold

of our recti!er at 0.15 V, and tag sensitivity at -13 dBm (typically

-9∼-12 dBm for RFID tags); the achieved maximal downlink range

is 0.9 m, which is less than the typical RFID reading range, ≈10

m. There are three main contributing factors for such a reduced

downlink range. First, our recti!er has lower SNRs because it trades

the output voltage (SNR) of the recti!er for !ne-grained (high-

frequency) baseband signals mainly due to the tuned resistor R1.

From Figure 4b, the output voltage of our recti!er is less than

half of WISP, which translates to a 6 dB loss. Second, our target

signals at 2.4 GHz have shorter wavelengths (≈0.12 m) than RFID

(≈0.33 m), which brings less than 15% of the received energy for

an RFID tag along the same path. It is an additional 8 dB drop

approximately. Third, we use a typical personalWiFi device that has

a 3 dBi omni-directional antenna whereas an RFID reader is usually

330 dBm power level is achieved by using a power ampli!er
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Figure 5: We observe di!erent envelope shapes for four dif-

ferent signals in (a) and achieve more than 99.3% identi"ca-

tion accuracy in (b) for all four protocols when Lt = 120, Lp =

40.

with directional patched antennas of 9 dBic. Yet, for personal on-

body sensors, 0.9 m downlink range is adequate to reuse excitation

signals from smartwatches, cellphones, and laptops.

2.2.2 Template Matching. Despite the seemly limited range of

the downlink, our recti!er does bring us high-bandwidth baseband

signals for identi!cation. As shown in Figure 5a, all the baseband

signals acquired manifest distinguishable envelopes. Next, we need

to properly set templates and check the baseband quality. Speci!-

cally, we use an ADC to sample those baseband signals and correlate

them with time-based templates, which measures how similar two

vectors are. The correlation score is denoted as C . Assume the tem-

plate size is Lt . It should have two parts: a preprocessing window

of size Lp and a matching window of size Lm . The preprocessing

window is for DC removal and normalization; the matching win-

dow is for correlation computation. How to set those parameters

then? If we reuse the minimal length of packet detection !elds for

four protocols, the whole template window should be 8 µs , which is

the length of the BLE preamble. And if the sampling rate is 20 Msps,

then Lt + Lp ≤ Lm = 160 samples. An exhaustive search shows

that there are a number of combinations that can achieve more

than 99% identi!cation accuracy. For example, as shown in Figure

5b when Lp = 40, Lt = 120, the minimal identi!cation among all

four protocols is 99.3% and the average identi!cation accuracy is

99.7%, demonstrating that the acquired baseband signals of four

protocols are of high-quality for packet identi!cation.

2.3 Low-Power Protocol Identi"cation

Previously, we show that desirable identi!cation accuracy can be

achieved if computation resources are not a problem. Our tag, how-

ever, uses an ultra-low-power FPGA, of which the power consump-

tion is as low as 2 µW . In the following, we show how to !t the

multiprotocol identi!cation algorithm into this constrained FPGA.

2.3.1 Low-Power Computation. To get a feel that why straight-

forward correlation-based matching is not feasible, we can estimate

how many resources are needed for matching. For example, if the

template size is 120, then we need 480 multipliers and 476 adders

to do correlation on four templates. Since a 9*9 multiplier takes

259 D-Flip-Flops, and a 9*9 adder takes 19 D-Flip-Flops, the total

4The template size is 120 and each samples takes 9 bits.

264



Multiprotocol Backsca!er CoNEXT ’20, December 1–4, 2020, Barcelona, Spain

0 0.5 1 1.5

Similarity score with ZigBee template

0

0.5

1

C
D

F

802.11n

802.11b

BLE

ZigBee

(a) Step 1: CZigbee > Thrsz

0 0.5 1 1.5

Similarity score with BLE template

0

0.5

1

C
D

F

802.11n

802.11b

BLE

(b) Step 2: CBLE > Thrsb

0 0.5 1 1.5

Similarity score with 802.11b template

0

0.5

1

C
D

F

802.11n

802.11b

(c) Step 3: C802.11b > Thrs11b

0 0.5 1 1.5

Similarity score with 802.11n template

0

0.5

1

C
D

F

802.11n

(d) Step 4: C802.11n > Thrs11n

Figure 6: Our ordered matching, from ZigBee to BLE, to 802.11b, and to 802.11n.

Table 2: Comparison of di!erent FPGA implementations for

multiprotocol identi"cation.

Multipliers Adders D-Flip-Flops

802.11n4 120 119 33,341

802.11b 120 119 33,341

BLE 120 119 33,341

ZigBee 120 119 33,341

Total (Naive Impl.) 480 476 133,364

Nano FPGA Impl. 2,860

D-Flip-Flops consumed would be 133,364 as shown in Table 2. This

is too many because an AGLN250 has only 6,144 D-Flip-Flops.

To address this, our solution is to do quantization and down-

sampling [25, 26, 45] at the same time. As quantization is a lossy

process that reduces the precision of samples, we trade identi!ca-

tion accuracy for meeting ultra-lower-power FPGA requirements.

Speci!cally, we quantize each sample into 1 bit, which enables us to

replace multipliers with adders. As a result, 2,860 D-Flip-Flops are

enough to complete 4-protocol matching when the template size

is 120. Then, we further employ downsampling to reduce the con-

sumption of FPGA resources by downsizing the template. To check

how quantization and downsampling a"ect detection accuracy, we

show average accuracy results in Figure 7a. Compared to Figure

5b, we observe that quantization and downsampling do degrade

detection accuracy but not too much.

2.3.2 Ordered Matching. During the above lossy process, we

have another interesting observation: four excitation signals demon-

strate noticeably di"erent resilience. For example, as shown in

6a, more than 99% of ZigBee packets could be easily identi!ed

by setting a similarity threshold for ZigBee-template correlation,

CZigbee > Thresz , even when we downsample the baseband from

20 Msps to 10 Msps with quantization. Such a phenomenon mo-

tivates to use ordered matching, which makes decisions one after

another, instead of blind matching that picks the highest score

among the four. To obtain empirically optimized parameters for

average identi!cation accuracy, we perform brute-force search of

all matching orders with discrete threshold values. It covers more

than 200,000 traces of di"erent ranges, scenarios, and protocols;

the results are pretty much consistency and no location-sensitivity
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Figure 7: Comparison of blind and ordered matching at a

sampling rate of 10 Msps with quantization.

is observed. The ordered matching process is shown in Figure 6

and the corresponding accuracy results are demonstrated in Figure

7b. We observe that the average identi!cation accuracy increases

from 0.906 for blind matching to 0.976 for ordered matching. Such

performance gains should be attributed to di"erent signal resilience

because the four signals have so many di"erences, e.g., symbol size,

modulation rate, and modulation scheme.

With the help of ordered matching, we attempt to keep reduc-

ing sampling rates and !nd that when the sampling rate is 2.5

Msps, it becomes tough to di"erentiate the four signals. The av-

erage identi!cation accuracy is only 0.485 as shown in Figure 8a.

Therefore, we intend to prolong the matching window, i.e., !nding

the maximal matching window size. We observe that only BLE and

802.11n are the limiting factors since the preambles of ZigBee and

802.11b are longer than 100 µs . For BLE packets, the access address

of advertising packets stays the same, which means we can extend

the matching window size to 40 µs by including this broadcasting

address. Meanwhile, for 802.11n, behind the legacy preamble, there

are HT-STF and HT-LTF !elds designed for MIMO support, which

are more than 20 µs . Hence, our extended matching window size

can be safely set at 40 µs for all the four protocols. Through such

an extension, the average identi!cation accuracy at 2.5 Msps is

boosted from 0.485 to 0.93 as shown in Figure 8b. Empirically, we

set the lowest sampling rate at 2.5 Msps if applications demand

high accuracy (> 0.9) because 1 Msps can only provide an average

identi!cation accuracy of 0.5 as shown in Figure 8c.

A few points are worth noting:

(1) We have the EN-signal for the ADC, which is controlled

by the FPGA to do duty-cycling and thus avoid excessive
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Figure 8: Using an extended matching window of 40 µs, the average identi"cation accuracy improves from 0.485 in (a) to 0.93

in (b). Nevertheless, if we continued to reduce the sampling rate to 1 Msps, the accuracy is not desirable.

power consumption. Further power saving can be made by

introducing an additional wake-up module, like [30].

(2) Although our ultra-low-power FPGA supports a limited stor-

age space of 36 kb for both code and data, the storage over-

head of four templates with the extended length is 400 bits,

which only costs 1.1% of the total storage space.

(3) Due to the e"ects of analog random noise and quantization

noise, we optimize the ADC performance by tuning the refer-

ence voltage to match the full-scale range of the input signal

because more of the output codes are used with the smaller

range of input voltages.

2.4 Overlay Modulation

After excitation signals are identi!ed, the next important task is

how to embed tag data onto those carriers. We !rst show why state-

of-the-art systems are di#cult to !t in with personal radios, then

propose our novel overlay modulation scheme, and summarize its

pros and cons.

2.4.1 Motivation. Being able to handle productive-data carriers

is an important feature for backscatter, as neither dedicated RFID

readers nor single-tone generators [17] are commonly available for

personal IoT sensors. The key enabler of it is the codeword trans-

lation, which encodes tag data by changing a valid codeword into

another. Yet, those state-of-the-art systems [29, 43, 46] share two

major drawbacks. First, the decoding quality of tag-data is highly

dependent on the data from the original channel. In other words,

when the original channel becomes unstable due to occlusion or

mobility, it is di#cult to decode tag data even when the data from

the backscattered channel is error-free. We perform experiments

for Hitchhike and FreeRider in three scenarios: the original chan-

nels with no obstruction, a wooden wall, and a concrete wall. As

shown in Figure 9a, the BER of tag data through 802.11b carriers is

increased from 0.2% for non-occlusion to 59% for a concrete wall

blocking the original channel. Second, large modulation o"sets

make two-receiver synchronization necessary because tag-data de-

coding requires to XOR two codewords of the same index from two

receivers. Figure 9b shows that Hitchhike has large modulation

o"sets, as far as 8 bits (symbols), across di"erent ranges. Such large

o"sets happen because currently there is no scheme on the tag
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Figure 9:Hitchhike and FreeRider su!er from twoproblems:

1) severe BER degradation when the original channel is oc-

cluded; 2) signi"cant modulation o!sets.

that can accurately synchronize (symbol-level) itself with the WiFi

carrier. To avoid synchronization overhead, PLoRa makes use of

a USRP that covers a wide band, so it samples the original and

backscatter channels at the same time. Apparently, neither synchro-

nizing two receivers nor requiring extra specialized hardware is

favorable for personal IoT sensors because single personal radios,

e.g., WiFi, Bluetooth, are more typical and popular.

2.4.2 Reference-Based Tag Modulation. To make backscatter

work with productive carriers and single commodity radios at the

same time, we novelly propose overlay modulation, which is to

modulate tag data on top of modulated (productive) carriers. This

idea is made based on an important observation: codeword transla-

tion can be realized in a single data stream, instead of involving data

from two channels in previous systems, which for the !rst time

completely removes the dependency of data from the original chan-

nel. We name it reference-based overlay modulation as it is inspired

by both pilot symbols widely used in wireless communication [35]

and the overlay network that is built on top of another network

[34]. The detailed work*ow is as follows. As shown in Figure 10, in

overlay modulation, a productive carrier consists of several mod-

ulatable sequences. Each modulatable sequence is κ-symbol long.

The !rst symbol is the reference symbol that carries productive

data, and the rest κ − 1 symbols have exactly the same content as

the reference symbol and are modulatable for tag data. To generate

such carriers, it only needs to spread the original symbol for κ time,
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Figure 10: Overlay modulation where the carrier is com-

posed of a couple of modulatable sequences. Each sequence

has a reference symbol carrying productive data and modu-

latable symbols for tag data.

so we call κ the spread factor for productive data. Note that the

main usage of reference symbols is to demodulate tag data, and it

is in the payload part, so it would not a"ect channel estimation or

signal acquisition.

Upon receiving productive carriers, the tag !rst applies reference-

symbol demodulation to obtain productive data and then goes

through a reverse codeword translation to demodulate tag data. The

real beauty of overlay modulation is that the decoding both produc-

tive and tag data happens on a single packet. As there are two kinds

of modulation involved in overlay modulation, reference-symbol

modulation, which comes from original carriers, and tag-data mod-

ulation, which adopts codeword translation from Hitchhike [42]

and FreeRider [43], we will discuss how to do tag-data modulation

and demodulation with WiFi 5, ZigBee, and Bluetooth as follows.

802.11b. For 802.11b excitation signals, reference symbols support

DSSS-BPSK, DSSS-DQPSK, and CCK modulation (same as original

802.11b modulation). Despite various modulation schemes for refer-

ence symbols, we observe that BPSK-based tag-data modulation is

compatible with all of them. Speci!cally, if the excitation signal is

identi!ed as 802.11b, we !rst frequency shift it to another channel 6

and thus avoid creating interference in the original channel [17, 44]
7. Then, the tag modulates each tag bit by simply shifting phase

0 or π . For example, to modulate a tag bit 1, we can phase shift

an 802.11b symbol for π , and to modulate a tag bit 0, we keep the

phase unchanged. To demodulate tag data, a simple XOR operation

of the reference symbol and the modulated tag symbol is adequate.

Ideally, a tag bit can be modulated onto one 802.11b symbol.

Unfortunately, due to backscatter signal and modulation errors,

the decoding performance becomes unstable. Inspired by Miller

code in RFID that uses long modulation length to combat low SNRs

[5], we de!ne γ , the spreading factor for tag data, which means

using γ symbols to modulate one tag bit. For example, if γ = 8, it

means a reference symbol (same as data symbol) takes 8 µs for 1

5Currently, we mainly focus on two types of WiFi: (1)DSSS and CCK modulation:
802.11b, and (2)the OFDM modulation that covers 802.11a/g/n/ac/ax.
6It is possible that we shift to a busy channel. Addressing this problem requires channel
sensing, which is not supported by most backscatter tags.
7We perform center-frequency alignment by a brute-force search.

(a) Multisca!er tag proto-

type.

U
p

150

(b) Experiment deployment.

Figure 11: Our tag prototype, around $60/each, and the ex-

perimental area is 30m*50m.

Mbps 802.11b. Nevertheless, the received bitstream from commodity

802.11b radios may contain reference symbols that are not all 0s or

1s. To address this, we introducemajority voting to decode reference

symbols 8.

802.11n. For 802.11n signals, the situation becomes a bit more com-

plicated as 802.11n involves OFDM. Reference-symbol modulation

for 802.11n includes OFDM-BPSK, OFDM-QPSK, and OFDM-QAM.

We observe that compared to 802.11b, even OFDM incorporates mul-

tiple orthogonal subcarriers, its main operation, IFFT, is still a linear

operation [32], i.e., BPSK-based tag-data modulation stands. The

di"erence is the unit of tag-data modulation becomes OFDM sym-

bol, 4µs for each. Another thing is that as the scrambler and BCC

encoder are not completely compatible with codeword translation

[43], which may leads to broken structures, tag-data modulation

cannot turn an OFDM-symbol of all 1s into an OFDM-symbol of

all 0s. The solution is to apply majority voting for the middle half

part of modulated symbols [46].

ZigBee. Reference-symbol modulation for ZigBee adopts o"set

quadrature phase-shift keying (OQPSK) [4]. In particular, each Zig-

Bee symbol has 4 bits, which are mapped into a PN code of 32 chips.

The chips are reorganized into IQ series where there is constant half

a chip o"set in-between. While such o"set is designed to reduce

PARP, it presents challenges for BPSK-based tag-data modulation

because a phase shift of π would damage this half-a-chip o"set

structure. The solution is to increase γ . This way, the !rst modu-

lated ZigBee symbol maybe not as expected, but the rest symbols

can be decoded successfully because commodity ZigBee radios pick

the best-matched sequence among 16 prede!ned PN sequences.

According to our experiments, γ = 3 can achieve BERs around 0.1%.

Bluetooth. If we identify the carrier as Bluetooth, it would em-

ploy FSK-based tag-data modulation, instead of PSK for the pre-

vious three kinds of signals. According to the speci!cation [1],

reference-symbol modulation for Bluetooth should adopt Gaussian

Frequency-Shift Keying (GFSK): f0 for symbol 0 and f1 for symbol

1. For example, commodity BLE radios have a modulation index

of 0.5, which is
f1−f0
fm

, where fm is the modulation frequency. If

8Similar to prior works, e.g., HitchHike and FreeRider, the reason of choosing majority
voting and repetition coding is that they are simple and e#cient. Our future work
includes the investigation of more sophisticated coding schemes, e.g., Forward Error
Correction (FEC).
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Table 3: Power consumption of our COTS prototype

Logical part Devices Power(mW)

Pkt det.
Pkt det.(FPGA) 2.5

ADC (20 Msps) 260

Modulation
FPGA (Modulation) 1.0

RF-switch 0.1

Clock Oscillator (20 MHz) 15.9

Total 279.5

the modulation frequency is 1 MHz, then f1 − f0 = 500kHz. Ac-

cordingly, our tag-data modulation can encode a bit 1 by shifting

a frequency of ∆f = 500 KHz, which turns a bit 1 to a bit 0, and

there is no frequency shift if we need to modulate a tag bit 0.

2.4.3 Summary. While the way of modulating symbols is in-

spired by codeword translation [42, 43], our overlay modulation is

built on top of it and beyond. The major di"erences are as follows:

1) Overlay modulation is the !rst to enable productive and tag

data co-existence in the same packet, resulting in that only a single

commodity radio is adequate for decoding.

2) The spectral e#ciency is largely improved as the required

decoding spectrum is the same as the original channel, whereas

prior work [29, 42, 43, 46, 47] demands twice of that.

3) Introducing reference symbols brings two limitations. First,

ambient signals cannot be excitation carriers for multiscatter tags.

Second, it reduces the throughput of tag data. Yet, various tradeo"s

can be made between the productive and tag data throughputs by

simply adjusting κ, which can be as short as 2, and as long as the

full payload. In short, overlay modulation sacri!ces the freedom of

arbitrary productive data for simpler decoding of tag data.

3 IMPLEMENTATION

We build a prototype of multiscatter using various commodity

radios and ultra-low-power FPGAs. The implementation is detailed

as follows.

O!-the-Shelf Prototype. Our tag prototype consists of two main

parts: an RF front-end and an FPGA for baseband processing. As

shown in Figure 11a, there are two antennas in the front-end. One

is connected to the envelope detector circuit and ADC, for mul-

tiprotocol identi!cation. Our envelope detector circuit is simple,

which has only diodes and capacitors. It removes high-frequency

carrier and generates envelopes for further FPGA processing. An

AD9235 ADC is used to sample baseband signals and sampled data

is fed into the FPGA. The other backscatter antenna is connected

to an ADG902 RF switch, and baseband processing is implemented

using an Igloo nano AGLN250 FPGA. All the baseband processing,

including DC removal and normalization, multiprotocol identi!ca-

tion, phase and frequency modulation are realized in an AGLN250,

which is ultra-low-power in nature and has only 6,144 D-*ip-*ops.

Power consumption. Although our prototype is designed mainly

for function veri!cation, we perform rigorous power analysis that

contains the breakdown of peak power consumption (20 Msps) for

all the parts, as shown in Table 3. There are three modules: packet

detection, modulation, and clock, which consume 262.5 mW, 1.1

mW, and 15.9 mW, respectively. The total peak power consumption

Table 4: Average tag-data exchange times of a single packet

under di!erent lighting conditions where excitations rates

are 2000 pkts/s for 802.1n and 802.11b, 70 pkts/s for BLE, and

20 pkts/s for ZigBee.

Total

time

Exchange

packets

Average exchange time

Indoor Outdoor

802.11n Indoor:

217.2s

Outdoor:

0.78s

360 0.60s 2.2ms

802.11b 360 0.60s 2.2ms

BLE 12.6 17.2s 61.9ms

ZigBee 3.6 60.1s 21.7ms

Table 5: Required hardware resources and power consump-

tion of protocol-identi"cation algorithms

Setup Power(mW) LUTs

20MS/s, no ±1 quan. 564 (100%) 34751

20MS/s, ±1 quan. 12 (2.1%) 1574

2.5MS/s, ±1 quan. 2 (0.35%) 1070

Table 6: Three modes that carry di!erent amount of produc-

tive data and tag data by adjusting κ.

Mode 1 κ Mode 2 κ Mode 3 κ

802.11b, γ = 4 8 16 4n 9

802.11n, γ = 2 4 8 2n

BLE, γ = 4 8 16 4n

ZigBee, γ = 2 4 8 2n

is 279.5 mW. While the power consumption of our current PCB

prototype is mainly constrained by COTS electronic components,

like ADC, there are two ways to improve.

First, advanced IC design promises to deliver much lower power

consumption. In particular, to replace power hungry component

AD9235, for future IC design, we can employ recent works on

advanced ADCs that consumes only tens of µW at the sampling

rate of tens of Msps [10, 21, 22, 38]. For example, [38] provides an

implementation that consumes only 83 µW at a sampling rate of 10

Msps. In contrast, we only require a rate of 2.5 Msps. Furthermore,

building IC-based baseband will bring additional power savings. We

simulate all the functions of our baseband processing using Libera,

a simulation software provided by the AGLN250 manufacturer.

The results show that the baseband power consumption is 1.89

mW . Note that AGLN250 is manufactured using an old 130-nm

CMOS process, so an even lower-power (at the scale of hundreds of

µW ) design using most advanced ASIC processes (5-7 nm) is quite

promising.

Second, we can include more energy harvesters when RF-power

is not enough to drive the tag. We have tested an MP3-37 solar

panel and integrated it into our system. The harvested energy is

managed by the TI power management chip BQ25570 and stored

9n = ⌊ lγ ⌋ and this formula applies to all ns in the table.
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Figure 12: Tradeo!s between productive data and tag data throughputs under di!erent modes.

in a storage capacitor of 0.01F. When the voltage on the storage ca-

pacitor exceeds 4.1V, the power is ready to use for computation and

communication parts. Then the voltage drops gradually and when

it reaches 2.6V, the BQ25570 chip shuts down the power. Hence, the

energy supplied by the storage capacitor for a discharging round is
1

2
×0.01F×((4.1V )2)−(2.6V )2) = 50mJ . This energy can support the

system to work for 50/279.5 = 0.18s . Suppose that 802.11n, 802.11b,

BLE, and ZigBee excitations signals are transmitted at 2000 pkts,

2000 pkts, 70 pkts, 20 pkts, respectively, then 50 mJ can support a

multiscatter tag to backscatter 360 pkts for 802.11n, 360 pkts for

802.11b, 12.6 pkts for BLE, and 3.6 pkts for ZigBee. At the same time,

to harvest 50 mJ, it takes 216.2 s and 0.78 s when the light strengths

are of 500 Lux for indoor and 1.04 × 10
5 Lux for outdoor scenar-

ios. Therefore, the average times of a single tag-data exchange for

indoor cases with 802.11n, 802.11b, BLE, and ZigBee are 0.6 s, 0.6

s, 17.2 s, and 60.1 s, respectively, as shown 4. The counterparts for

outdoor cases are 2.2 ms, 2.2 ms, 61.9 ms, and 21.6 ms.

Protocol-Identi"cationPowerE#ciency.To examine howmuch

power savings our multiprotocol identi!cation design achieves, we

compare it against other variant implementations without quanti-

zation or downsampling. The competition metric is the simulated

power consumption on an XILINX Artix-7 FPGA because variant

implementations are too complex to deploy on an AGLN250. Results

are shown in Table 5 10. At 20 Msps sampling rate, quantization re-

duces power consumption from 564 mW to 12 mW. Further, with 2.5

Msps sampling rate and quantization, the consumed power drops

to 2 mW, which translates to a 282× lower power than the naive

implementation.

Experimental Setup. Figure 11b shows the *oor plan. In the LoS

scenarios, all devices are placed in the hallway; we deployed a

multiscatter tag 0.8 m away from the commodity radios (802.11b/n

WiFi, ZigBee, or Bluetooth), then we move the receiver away from

the tag and measure the received signal strength indicator (RSSI),

bit error rate (BER) and throughput of the backscattered signal. In

the NLoS scenarios, we place the transmitter and the multiscatter

tag in the o#ce, and the receiver is still placed in the hallway, The

rest of experimental settings is the same as LoS cases’.

For WiFi, we use Qualcomm Atheros AR938X NICs as both pro-

ductive carrier generators and receivers, and set the transmission

rate at 1 Mbps for 802.11b and MCS=0 for 802.11n. For BLE, we

employ a TI CC2540 radio as the transmitter at 1 Mbps and a TI

10LUT (Look-Up-Table) is the basic con!gurable logic element in an FPGA. Usually,
the number of LUTs used is proportional to the IC-simulation power consumption.

CC2650 as the receiver. Although the random delay of the link layer

for advertising events is unknown, we empirically con!rm that the

maximum advertising packet rate is stable around 70 packets/s. For

ZigBee, we adopt a TI CC2530 radio as the transmitter and a TI

CC2650 radio as the receiver. The maximal packet rate for CC2530

is about 20 packets/s. As our overlay modulation requires to obtain

raw data bits on the physical layer, the CRC (cyclic redundancy

check) functions of NICs are turned o" in our experiments.

4 EVALUATION

4.1 End-to-End Performance

In this study, we mainly answer the following questions: what kind

of tradeo"s of productive and tag data can be made? what are the

maximal backscatter ranges in LoS and NLoS cases? and what is

the negative impact of the requirement of original packets in prior

work?

4.1.1 Tradeo!s between Productive and Tag Data. According to

the design of overlay modulation, γ determines how long a refer-

ence symbol is and κ de!nes the number of modulatable symbols.

Since the reference symbol carries productive data and modulatable

symbols carry tag data, we can adjust ratios of the two to make

tradeo"s. In particular, we de!ne three modes as shown in Table 6.

In mode 1, the number of reference symbols is the same as that of

modulatable symbols, which would make throughputs of the two

pretty close. Compared to mode 1, mode 2 increases the ratio of

modulatable symbols to reference symbols from 1:1 to 3:1. Mode 3

pushes this to an extreme, which allows modulatable symbols to be

as many as possible and only a single bit of productive data would

be transmitted. γ values of four protocols are empirically chosen

to achieve the best throughputs while maintaining BERs less than

10
−1 for short distances.

In this experiment, we keep the transmitter and receiver sta-

tionary and move the tag at multiple locations to explore spatial

diversity. We report the average value of 100 independent loca-

tions for all the four signals. The results are shown in Figure 12.

We observe that in mode 1, the achieved productive and tag data

throughputs are roughly the same across di"erent excitation sig-

nals. The maximal aggregated throughput is 278.4 kbps for BLE,

of which the productive data throughput is 141.6 kbps, and tag

data throughput is 136.8 kbps. For mode 2, the tag data throughput

surges because the number of modulatable symbols is 3x than that

of reference symbols. Same observations can also be made for the
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Figure 13: Backscatter RSSI, BER, and throughput across distances in LoS deployment.
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Figure 14: Backscatter RSSI, BER, and throughput across distances in NLoS deployment.

rest protocols. In mode 3, as expected, we barely see any through-

put for productive data. Because each packet can only carry 1-bit

productive data. In contrast, tag data throughput is maximized com-

pared to mode 1 and 2. To conclude, this experiment validates our

overlay modulation design, which for the !rst time provides much

*exibility to achieve tradeo"s between productive data and tag data.

According to di"erent application requirements, the tradeo" can

be simply made by choosing a proper κ. Since mode 1 provides

the best balance between two kinds of data, mode 1 is our default

setting in the rest of the evaluation.

4.1.2 E!ective Backsca"er Ranges. Next, we intend to examine

the maximal backscatter ranges for excitation signals.

LoS scenarios: We !rst measure the RSSI, BER and throughput

of multiscatter in the line-of-sight scenario. Figure 13a shows that

the maximum backscatter communication range of WiFi(11b/n),

ZigBee and Bluetooth are 28 m, 22 m, and 20 m, respectively. From

Figure 13b, we can see that four protocols can still maintain low

BERs when the tag is as far as 16 m away from the receiver. Fig-

ure 13c demonstrates that multiscatter achieves maximal aggregate

throughputs of 278.4 kbps, 219.8 kbps, 101.2 kbps, 26.2 kbps for Blue-

tooth, 802.11b, 802.11n, and ZigBee, respectively. As the distance

increases, the backscattered signals’ packet rate drops gradually.

For example, the receiver hardly receives backscattered packets

when the distance is longer than 20 m for BLE excitation signals.

NLoS scenarios:We also evaluate multiscatter in non-line-of-sight

deployment. As shown in Figure 14a, the maximum NLoS backscat-

ter communication range of WiFi(11b/n), ZigBee and Bluetooth are

22 m, 18 m, and 16 m, respectively. Speci!cally, WiFi and BLE re-

ceivers can achieve a signal strength of more than -75 dBm within
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Figure 15: Comparison of tag-data throughputs when there

is an occlusion in the original channel.

10 m, while ZigBee signal strength reduces quickly to less than

-80 dBm if the distance exceeds 4 m. As expected, multiscatter’s

performance degrades across all protocols with NLoS scenarios but

still manifests its resilient ability to work with occlusions.

4.1.3 Negative Impact of Requiring Original Packets. Previous

backscatter systems [29, 42, 43, 47] require two receivers to de-

code tag data, where one receiver works on the original packet

and another captures the backscattered packet. These systems base

their decoding function on a precondition: the excitation signal

is always well received and 100% correctly decoded. However, it

is not always the case. We conduct experiments to examine this

impact and !nd that even when the original channel is occluded

by a thin drywall, the original data reception becomes highly un-

stable. The detailed results are depicted in Figure 15. For tag-data
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Figure 16: Throughput performance when diverse excitation carriers collide in the time domain and frequency domains.

throughput, multiscatter achieves 136 kbps and 121 kbps for BLE

and 802.11b excitations thanks to our single-receiver design while

the throughput of FreeRider is 33 kbps and that of Hitchhike is

94 kbps. Hence, in spite of occlusions, multiscatter still achieves

better tag-data throughput than both FreeRider and Hitchhike. The

main contributing factor is that low-quality data from the original

channel signi!cantly impacts the tag data decoding. What’s worse,

if original packets are completely lost, backscattered packets can-

not be decoded correctly at all. In contrast, multiscatter does not

require original packets for decoding and thus avoids this problem.

Both productive and tag data can be decoded by multiscatter using

only a single commodity receiver.

4.1.4 Impact of Collided Excitations. Next, we examine how

multiscatter performs when di"erent excitations collided in the

time and frequency domains. For experimental setup, we take mode

1 where the ratio of modulatable symbols to reference symbols is

1:1 and report aggregated throughput. As shown in Figure 16a, we

employ two excitations collided in time. The 802.11n excitation is

transmitted at 2.417 GHz with 2000 pkts/s. Each packet is 300-byte

long. The other excitation is BLE signal at 2.432 GHz with 34 pkts/s
11. Two excitations collided in time. And since multiscatter does

not employ !lters which are heavily used in active commercial

radios, both excitations would collide on the tag. The results are

shown in Figure 16b. We observe that the throughput for 802.11n

does not change too much while the throughput for BLE experi-

ences a evident drop from 278 kbps to 92 kbps. This is because

our excitation-collision setup in Figure 16a is close to real scenario

where WiFi packets are more intense and longer than BLE pack-

ets. Thus, when two carriers collides, both would take throughput

losses. But such losses only makes only slight di"erences in the

overall throughput for WiFi because WiFi excitation is sent at a rate

of 2000 pkts/s, which is way higher than BLE’s 34 pkts/s. There-

fore, to protect BLE throughput in such scenarios, !lters on the tag

would be necessary, which we leave for future work.

Also, we investigate two excitations collided in frequency, as

shown in Figure 16c. The 802.11n excitation stays the same while

the other excitation is ZigBee signal at 2.415 GHz with 20 pkts/s.

11The current COTS BLE chips only support full control over advertising packets and
its maximum transmission rate is 70 pkts/s due to advertising intervals and unknown
link-layer delay [41] and the packet length is 37 bytes. The measured advertising rates
on our campus (including classroom, lab, library, cafeteria) are mostly between 30
pkts and 40 pkts. So we set the BLE excitation rate at 34 pkts/s to simulate real-world
scenarios in our controlled experiments.
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Figure 17: BERs with various reference-symbol modulation

schemes.

Each ZigBee packet is 200-byte long. We depict results in Figure 16d.

The observation is that both ZigBee and 802.11n throughputs are

not much a"ected by collisions in frequency. This is primarily due

to that both excitations are not overlapped in the time domain and

our multiprotocol identi!cation design can e"ectively distinguish

such packets thanks to ordered template matching.

In a word, our current design is fully compatible with TDMA-like

multiprotocol excitations and plan to handle FDMA-like multipro-

tocol excitations better in the future.

4.1.5 Impact of Reference-Symbol Modulation. Next, we are go-

ing to examine the impact of di"erent reference-symbol modulation

schemes on tag-data communication. Since both ZigBee and Blue-

tooth only support single modulation patterns, OQPSK for ZigBee

and GFSK for Bluetooth, here we focus on 802.11b and 802.11n

protocols. Speci!cally, we investigate BERs of tag data with ref-

erence symbols modulated with DSSS-BPSK, DSSS-DQPSK, and

CCK (5.5Mbps) for 802.11b, and OFDM-BPSK, OFDM-QPSK, and

OFDM-16QAM for 802.11n.

As shown in Figure 17a and 17b, BERs of tag data with di"er-

ent modulation schemes are quite stable and within a good range.

In particular, for 802.11b, BERs are all below 0.6% with all di"er-

ent modulations. Those results show that our overlay modulation

are robust across di"erent reference-symbol modulation schemes.

Further, employing such reference symbols causes no noticeable

negative e"ects on channel estimation or signal acquisition. Because

reference symbols are in the payload part and channel estimation

is mainly done in the preamble part. If not, it is di#cult to observe
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Figure 18: Performance comparison of multiscatter tags

with single-protocol tags.

stable and decent BER results for both 802.11b and 802.11n in Figure

17a and 17b.

4.2 Leveraging Excitation Diversity

4.2.1 Adaptation to Discontinuous Excitations. In practical ap-

plications, it is common that a speci!c signal we expect does not

always exist, and di"erent types of excitation signals may appear

intermittently. First, we create periodical 802.11b and 802.11n pro-

ductive carriers as shown in Figure 18a, each taking 50% duty cycle.

Then we measure the throughputs for both a multiscatter and an

802.11n tag. As shown in Figure 18a, the multiscatter tag is busy

transmitting data all the time, while the 802.11b tag is idle for 50%

of the testing time. Such a huge di"erence comes from that the mul-

tiscatter tag is able to identify both 802.11n and 802.11b excitation

signals and leverages them to do transmission accordingly, which

clearly shows its ability to exploit excitation diversity.

4.2.2 Mixed Excitation Signals. For a backscatter system work-

ing only with one protocol, the data-rate is di#cult to improve even

if there are multiple available excitation signals. In this experiment,

a smart bracelet has to deliver a goodput of more than 6.3 kbps

for on-body monitoring, and there are abundant 802.11n and few

802.11b excitation signals. As shown in Figure 18b, after evaluating

the excitation rates of all signals, our multiscatter tag detects that

the current 802.11n excitation is with the highest backscattered

goodput. Thus, it intelligently selects 802.11n as its source to ac-

complish the goodput goal. In contrast, the 802.11b tag fails to meet

the requirement because 802.11b excitation signals are spotty.

5 RELATEDWORK

For the last decade, turning backscatter into general-purpose com-

munication for IoT networks has been a hot topic in the wireless

network community. The seminal work, ambient backscatter [23],

creatively proposes to use ambient TV signals as carriers to enable

device-to-device backscatter communication for the !rst time. It

opens the door for backscatter communication of reusing existing

signals. FS backscatter [44] observes that frequency-shifting is the

key to improve SNRs. BackFi [6] improves backscatter throughput

to high data rates of 5-300 Mbps. Despite its high throughput, the

required full-duplex radios for self-interference cancellation are

hard to realize for o"-the-shelf devices. As a result, the commu-

nity looks into how to achieve symbol-level backscatter that can

communicate with commodity radios.

Passive WiFi [20] is the !rst backscatter design that decouples

low-power digital baseband processing with power-consuming car-

rier generation and achieves up to 11 Mbps data rate. The key

enabler of this approach is a dedicated plug-in device that trans-

mits single tones out of the WiFi bands, which is also used in LoRa

backscatter [33] and BLE-backscatter. FM backscatter [39] is pro-

posed to creates backscatter transmissions decodable on any FM

receiver. Nevertheless, the raw FM receiver becomes obsolete and

most up-to-date smartphones do not support it many years ago.

To overcome the limitation of infrastructure support, interscat-

ter [17] comes in. It is the !rst work that enables high data rate

backscatter using only commodity devices. It novelly turns a Blue-

tooth device into a single-tone generator using reserve-whitening

techniques. While everything seems perfect, the severe problem is

reserve-whitening forbids using productive signals as carriers.

Hitchhike [42] is the !rst work that enables productive backscat-

ter with commodity devices at the symbol level. The major contribu-

tion is codeword translation that enables symbol-level backscatter

modulation by changing one codeword into another (valid) code-

word. Enabling such productive backscatter signi!cantly widens

backscatter sources and makes ubiquitous backscatter vision closer.

FreeRider [43], X-Tandem [47], PLoRa [29] expand this idea from

di"erent perspectives. But the common fundamental issue is that

the decoding process requires the productive data in the original

channel and the tag-modulated data in the frequency-shifted chan-

nel.

Along this research line, multiscatter is inspired by and built

upon all the aforementioned e"orts and makes two fundamental

di"erences. First, it greatly broadens backscatter sources by sup-

porting multiprotocol identi!cation, includingWiFi, Bluetooth, and

ZigBee in the most crowded 2.4 GHz ISM band. For the !rst time,

the backscatter design is not restricted to only one kind of carriers

as in prior work. Second, it encodes tag data on top of productive

data and can be decoded using a single commodity device, removing

the barrier to fast adoption with smart devices.

6 CONCLUSION

We have presented multiscatter, a novel backscatter design that can

identify multiple excitation signals and take productive carriers for

backscatter. We have built the hardware prototype and conducted

extensive experiments to verify the feasibility and e#cacy. We be-

lieve that supporting multiple excitation signals is a signi!cant step

towards general-purpose battery-free communication for IoT, since

it can be seamlessly incorporated into widely deployed wireless

infrastructure.
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